Vedic Maths Day 1: Ekadhikena Purvena Sutra with Easy Examples, Tricks, MCQs and FAQs

 

Vedic Maths Day 1: Ekadhikena Purvena Sutra with Easy Examples, Tricks, MCQs and FAQs
Vedic Maths • Day 1 • Week 1

Vedic Maths Day 1 – Ekadhikena Purvena (एकाधिकेन पूर्वेण)

परिचय

Vedic Maths प्राचीन भारत की गणितीय प्रणाली है, जिसमें 16 मुख्य सूत्र और 13 उप-सूत्र शामिल हैं। यह गणना को तेज़, सरल और रोचक बनाता है। इस Day 1 में हम पहला सूत्र Ekadhikena Purvena (एकाधिकेन पूर्वेण) सीखेंगे, जिससे 5 पर समाप्त होने वाले numbers का square सेकंडों में निकाला जा सकता है।

Meaning: “By one more than the previous one” — यानी पिछले अंक में एक अधिक संख्या से गुणा करो, फिर अंत में 25 लिख दो।

पहला सूत्र: Ekadhikena Purvena

जब भी कोई संख्या 5 पर समाप्त होती है (जैसे 15, 25, 35, 95, 105, 125…), उसका square बहुत तेज़ी से निकाला जा सकता है।

Step-by-Step Rule

  1. 5 से पहले का भाग (जैसे 25 में 2, 125 में 12) अलग कर लो।
  2. उसे उसके next number से multiply करो।
  3. अंत में हमेशा 25 जोड़ दो।

Example: 25² → 2 × 3 | 25 = 625

Examples

  • 35² = 3 × 4 | 25 = 1225
  • 65² = 6 × 7 | 25 = 4225
  • 95² = 9 × 10 | 25 = 9025
  • 105² = 10 × 11 | 25 = 11025
  • 125² = 12 × 13 | 25 = 15625

Important Notes (Students के लिए)

RuleExplanation
अगर संख्या 5 पर खत्म होती है 5 से पहले वाले भाग को उसके next number से गुणा करें, अंत में 25 जोड़ दें
2-digit numbers 25² = (2 × 3)|25 = 625, 45² = (4 × 5)|25 = 2025
3-digit numbers 105² = (10 × 11)|25 = 11025, 135² = (13 × 14)|25 = 18225

Practice Questions with Answers

  1. 15² = 1 × 2 | 25 = 225
  2. 25² = 2 × 3 | 25 = 625
  3. 35² = 3 × 4 | 25 = 1225
  4. 45² = 4 × 5 | 25 = 2025
  5. 55² = 5 × 6 | 25 = 3025
  6. 65² = 6 × 7 | 25 = 4225
  7. 75² = 7 × 8 | 25 = 5625
  8. 85² = 8 × 9 | 25 = 7225
  9. 95² = 9 × 10 | 25 = 9025
  10. 105² = 10 × 11 | 25 = 11025
  11. 115² = 11 × 12 | 25 = 13225
  12. 125² = 12 × 13 | 25 = 15625
  13. 135² = 13 × 14 | 25 = 18225
  14. 145² = 14 × 15 | 25 = 21025
  15. 155² = 15 × 16 | 25 = 24025
  16. 165² = 16 × 17 | 25 = 27225
  17. 175² = 17 × 18 | 25 = 30625
  18. 185² = 18 × 19 | 25 = 34225
  19. 195² = 19 × 20 | 25 = 38025
  20. 205² = 20 × 21 | 25 = 42025

Find

  1. 15² = ?
  2. 25² = ?
  3. 45² = ?
  4. 55² = ?
  5. 75² = ?
  6. 85² = ?
  7. 95² = ?
  8. 105² = ?
  9. 115² = ?
  10. 125² = ?
  11. 135² = ?

MCQs (Multiple Choice Questions) on Vedic Maths Sutra: Ekadhikena Purvena

  1. What does Ekadhikena Purvena mean?
    a) By subtraction
    b) By one more than the previous one
    c) By division
    d) None of these
  2. 25² using this sutra is?
    a) 525
    b) 425
    c) 625
    d) 725
  3. 35² = ?
    a) 1025
    b) 1125
    c) 1225
    d) 1325
  4. 65² = ?
    a) 4125
    b) 4225
    c) 4325
    d) 4425
  5. 95² = ?
    a) 8025
    b) 9025
    c) 10025
    d) 11025
  6. 125² = ?
    a) 14225
    b) 15625
    c) 16225
    d) 15225
  7. Formula for number ending with 5?
    a) (n×(n+1)) | 25
    b) (n×(n-1)) | 25
    c) (n²+25)
    d) None
  8. Square of 45 is?
    a) 1825
    b) 1925
    c) 2025
    d) 2125
  9. 85² = ?
    a) 7025
    b) 7125
    c) 7225
    d) 7325
  10. Square of 15?
    a) 200
    b) 215
    c) 225
    d) 250
  11. Square of 55?
    a) 2525
    b) 2725
    c) 3025
    d) 3225
  12. Formula works only for?
    a) Numbers ending with 2
    b) Numbers ending with 5
    c) Numbers ending with 0
    d) All
  13. Square of 105?
    a) 10025
    b) 11025
    c) 12025
    d) 13025
  14. Square of 205?
    a) 41025
    b) 42025
    c) 43025
    d) 44025
  15. Square of 175?
    a) 30625
    b) 31625
    c) 32625
    d) 33625
  16. Square of 135?
    a) 17225
    b) 18225
    c) 19225
    d) 20225
  17. Formula is useful for?
    a) Addition
    b) Multiplication
    c) Squaring numbers ending with 5
    d) Division
  18. Square of 195?
    a) 36025
    b) 37025
    c) 38025
    d) 39025
  19. Square of 185?
    a) 33225
    b) 34225
    c) 35225
    d) 36225
  20. Square of 145?
    a) 20025
    b) 21025
    c) 22025
    d) 23025

FAQs on Vedic Maths: Ekadhikena Purvena Sutra

  1. Q. What is Ekadhikena Purvena Sutra?
    Ans. It is the first sutra of Vedic Mathematics meaning "By one more than the previous one".
  2. Q. Where is this sutra applied?
    Ans. It is applied to find the squares of numbers ending in 5.
  3. Q. Can this sutra be applied to 2-digit and 3-digit numbers?
    Ans. Yes, it works for both. Example: 95² = 9025, 125² = 15625.
  4. Q. Is this faster than traditional method?
    Ans. Yes, it saves time and avoids long multiplication.
  5. Q. How to apply on 25²?
    Ans. Take 2 × 3 = 6, write 25 → 625.
  6. Q. How to apply on 125²?
    Ans. Take 12 × 13 = 156, write 25 → 15625.
  7. Q. Does it work for numbers not ending in 5?
    Ans. No, it is only for numbers ending in 5.
  8. Q. Who discovered Vedic Maths?
    Ans. Jagadguru Bharati Krishna Tirthaji compiled the 16 sutras of Vedic Maths.
  9. Q. Is this sutra useful for competitive exams?
    Ans. Yes, very useful for SSC, Banking, CAT, UPSC-CSAT.
  10. Q. What is the formula?
    Ans. If N = (x5), then N² = x × (x+1) | 25.
  11. Q. Can it be used for mental calculation?
    Ans. Yes, it is best for quick mental calculation.
  12. Q. What is 35² using this sutra?
    Ans. 3 × 4 = 12, add 25 → 1225.
  13. Q. What is 65² using this sutra?
    Ans. 6 × 7 = 42, add 25 → 4225.
  14. Q. What is 205² using this sutra?
    Ans. 20 × 21 = 420, add 25 → 42025.
  15. Q. Why is it important for students?
    Ans. It helps build calculation speed and confidence in maths.
  16. Q. Can this be taught to kids?
    Ans. Yes, even 8-10 year old students can easily learn it.
  17. Q. Is it part of Vedic Maths syllabus?
    Ans. Yes, it is the first sutra in the syllabus of Vedic Maths.
  18. Q. Is there a trick to remember this sutra?
    Ans. Just remember: multiply the first digits with their next, and add 25 at the end.
  19. Q. How is it different from normal squaring?
    Ans. Normal squaring needs multiplication of big numbers, this is one-step calculation.
  20. Q. Can I solve 95² without pen-paper using this?
    Ans. Yes! 9 × 10 = 90, write 25 → 9025. Done in seconds.
  21. Q. Kya ye trick sirf 5 par khatm hone wale numbers ke liye hai?
    Ans. Haan. Ye sutra unhi numbers ke square ke liye best kaam karta hai jo 5 par khatm hote hain.
  22. Q. 3-digit numbers (jaise 125) par kaam karega?
    Ans. Bilkul. 125² = 12 × 13 | 25 = 15625. Rule same hai: pehle hissa × uska next number, aur ant me 25.
  23. Q. Normal multiplication se behtar kyu?
    Ans. Kyoki steps bahut kam ho jate hain, time bachta hai, aur galti ki sambhavna kam hoti hai.
  24. Q. Competitive exams me useful?
    Ans. Haan. SSC, Banking, Railways, UPSC-CSAT, CAT jaise exams me quick calculation ke liye bahut useful hai.

निष्कर्ष

आज आपने Vedic Maths ka pehla sutra Ekadhikena Purvena सीखा। बस याद रखें: पहला भाग × उसका अगला भाग और अंत में 25. Ab aap 5 par khatm hone wale kisi bhi number ka square seconds me nikal sakte hain.

Next Class (Day 2, Week 1)

About the Author

Lata Agarwal

Mathematics, Science and Astronomy professional, M.Sc. and M.Phil. in Maths with 10+ years of experience as Assistant Professor and Subject Matter Expert.

Author at Prinsli.com

Comments