Vedic Maths • Day 1 • Week 1
Vedic Maths Day 1 – Ekadhikena Purvena (एकाधिकेन पूर्वेण)
Table of Contents
परिचय
Vedic Maths प्राचीन भारत की गणितीय प्रणाली है, जिसमें 16 मुख्य सूत्र और 13 उप-सूत्र शामिल हैं। यह गणना को तेज़, सरल और रोचक बनाता है। इस Day 1 में हम पहला सूत्र Ekadhikena Purvena (एकाधिकेन पूर्वेण) सीखेंगे, जिससे 5 पर समाप्त होने वाले numbers का square सेकंडों में निकाला जा सकता है।
Meaning: “By one more than the previous one” — यानी पिछले अंक में एक अधिक संख्या से गुणा करो, फिर अंत में 25 लिख दो।
पहला सूत्र: Ekadhikena Purvena
जब भी कोई संख्या 5 पर समाप्त होती है (जैसे 15, 25, 35, 95, 105, 125…), उसका square बहुत तेज़ी से निकाला जा सकता है।
Step-by-Step Rule
- 5 से पहले का भाग (जैसे 25 में 2, 125 में 12) अलग कर लो।
- उसे उसके next number से multiply करो।
- अंत में हमेशा 25 जोड़ दो।
Example: 25² → 2 × 3 | 25 = 625
Examples
- 35² = 3 × 4 | 25 = 1225
- 65² = 6 × 7 | 25 = 4225
- 95² = 9 × 10 | 25 = 9025
- 105² = 10 × 11 | 25 = 11025
- 125² = 12 × 13 | 25 = 15625
Important Notes (Students के लिए)
Rule | Explanation |
---|---|
अगर संख्या 5 पर खत्म होती है | 5 से पहले वाले भाग को उसके next number से गुणा करें, अंत में 25 जोड़ दें |
2-digit numbers | 25² = (2 × 3)|25 = 625, 45² = (4 × 5)|25 = 2025 |
3-digit numbers | 105² = (10 × 11)|25 = 11025, 135² = (13 × 14)|25 = 18225 |
Practice Questions with Answers
- 15² = 1 × 2 | 25 = 225
- 25² = 2 × 3 | 25 = 625
- 35² = 3 × 4 | 25 = 1225
- 45² = 4 × 5 | 25 = 2025
- 55² = 5 × 6 | 25 = 3025
- 65² = 6 × 7 | 25 = 4225
- 75² = 7 × 8 | 25 = 5625
- 85² = 8 × 9 | 25 = 7225
- 95² = 9 × 10 | 25 = 9025
- 105² = 10 × 11 | 25 = 11025
- 115² = 11 × 12 | 25 = 13225
- 125² = 12 × 13 | 25 = 15625
- 135² = 13 × 14 | 25 = 18225
- 145² = 14 × 15 | 25 = 21025
- 155² = 15 × 16 | 25 = 24025
- 165² = 16 × 17 | 25 = 27225
- 175² = 17 × 18 | 25 = 30625
- 185² = 18 × 19 | 25 = 34225
- 195² = 19 × 20 | 25 = 38025
- 205² = 20 × 21 | 25 = 42025
Find
- 15² = ?
- 25² = ?
- 45² = ?
- 55² = ?
- 75² = ?
- 85² = ?
- 95² = ?
- 105² = ?
- 115² = ?
- 125² = ?
- 135² = ?
MCQs (Multiple Choice Questions) on Vedic Maths Sutra: Ekadhikena Purvena
- What does Ekadhikena Purvena mean?
a) By subtraction
b) By one more than the previous one ✅
c) By division
d) None of these - 25² using this sutra is?
a) 525
b) 425
c) 625 ✅
d) 725 - 35² = ?
a) 1025
b) 1125
c) 1225 ✅
d) 1325 - 65² = ?
a) 4125
b) 4225 ✅
c) 4325
d) 4425 - 95² = ?
a) 8025
b) 9025 ✅
c) 10025
d) 11025 - 125² = ?
a) 14225
b) 15625 ✅
c) 16225
d) 15225 - Formula for number ending with 5?
a) (n×(n+1)) | 25 ✅
b) (n×(n-1)) | 25
c) (n²+25)
d) None - Square of 45 is?
a) 1825
b) 1925
c) 2025 ✅
d) 2125 - 85² = ?
a) 7025
b) 7125
c) 7225 ✅
d) 7325 - Square of 15?
a) 200
b) 215
c) 225 ✅
d) 250 - Square of 55?
a) 2525
b) 2725
c) 3025 ✅
d) 3225 - Formula works only for?
a) Numbers ending with 2
b) Numbers ending with 5 ✅
c) Numbers ending with 0
d) All - Square of 105?
a) 10025
b) 11025 ✅
c) 12025
d) 13025 - Square of 205?
a) 41025
b) 42025 ✅
c) 43025
d) 44025 - Square of 175?
a) 30625 ✅
b) 31625
c) 32625
d) 33625 - Square of 135?
a) 17225
b) 18225 ✅
c) 19225
d) 20225 - Formula is useful for?
a) Addition
b) Multiplication
c) Squaring numbers ending with 5 ✅
d) Division - Square of 195?
a) 36025
b) 37025
c) 38025 ✅
d) 39025 - Square of 185?
a) 33225
b) 34225 ✅
c) 35225
d) 36225 - Square of 145?
a) 20025
b) 21025 ✅
c) 22025
d) 23025
FAQs on Vedic Maths: Ekadhikena Purvena Sutra
- Q. What is Ekadhikena Purvena Sutra?
Ans. It is the first sutra of Vedic Mathematics meaning "By one more than the previous one". - Q. Where is this sutra applied?
Ans. It is applied to find the squares of numbers ending in 5. - Q. Can this sutra be applied to 2-digit and 3-digit numbers?
Ans. Yes, it works for both. Example: 95² = 9025, 125² = 15625. - Q. Is this faster than traditional method?
Ans. Yes, it saves time and avoids long multiplication. - Q. How to apply on 25²?
Ans. Take 2 × 3 = 6, write 25 → 625. - Q. How to apply on 125²?
Ans. Take 12 × 13 = 156, write 25 → 15625. - Q. Does it work for numbers not ending in 5?
Ans. No, it is only for numbers ending in 5. - Q. Who discovered Vedic Maths?
Ans. Jagadguru Bharati Krishna Tirthaji compiled the 16 sutras of Vedic Maths. - Q. Is this sutra useful for competitive exams?
Ans. Yes, very useful for SSC, Banking, CAT, UPSC-CSAT. - Q. What is the formula?
Ans. If N = (x5), then N² = x × (x+1) | 25. - Q. Can it be used for mental calculation?
Ans. Yes, it is best for quick mental calculation. - Q. What is 35² using this sutra?
Ans. 3 × 4 = 12, add 25 → 1225. - Q. What is 65² using this sutra?
Ans. 6 × 7 = 42, add 25 → 4225. - Q. What is 205² using this sutra?
Ans. 20 × 21 = 420, add 25 → 42025. - Q. Why is it important for students?
Ans. It helps build calculation speed and confidence in maths. - Q. Can this be taught to kids?
Ans. Yes, even 8-10 year old students can easily learn it. - Q. Is it part of Vedic Maths syllabus?
Ans. Yes, it is the first sutra in the syllabus of Vedic Maths. - Q. Is there a trick to remember this sutra?
Ans. Just remember: multiply the first digits with their next, and add 25 at the end. - Q. How is it different from normal squaring?
Ans. Normal squaring needs multiplication of big numbers, this is one-step calculation. - Q. Can I solve 95² without pen-paper using this?
Ans. Yes! 9 × 10 = 90, write 25 → 9025. Done in seconds. - Q. Kya ye trick sirf 5 par khatm hone wale numbers ke liye hai?
Ans. Haan. Ye sutra unhi numbers ke square ke liye best kaam karta hai jo 5 par khatm hote hain. - Q. 3-digit numbers (jaise 125) par kaam karega?
Ans. Bilkul. 125² = 12 × 13 | 25 = 15625. Rule same hai: pehle hissa × uska next number, aur ant me 25. - Q. Normal multiplication se behtar kyu?
Ans. Kyoki steps bahut kam ho jate hain, time bachta hai, aur galti ki sambhavna kam hoti hai. - Q. Competitive exams me useful?
Ans. Haan. SSC, Banking, Railways, UPSC-CSAT, CAT jaise exams me quick calculation ke liye bahut useful hai.
निष्कर्ष
आज आपने Vedic Maths ka pehla sutra Ekadhikena Purvena सीखा। बस याद रखें: पहला भाग × उसका अगला भाग और अंत में 25. Ab aap 5 par khatm hone wale kisi bhi number ka square seconds me nikal sakte hain.
Continue Learning:
Next Class: Day 2, Week 1
Comments
Post a Comment